Fructose alters genes in the brain and omega-3 fatty acids can reverse the damages

A range of diseases — from diabetes to cardiovascular disease, and from Alzheimer’s disease to attention deficit hyperactivity disorder — are linked to changes to genes in the brain. A study by UCLA scientists has found that hundreds of those brain genes can be damaged by fructose, a sugar that’s common in the Western diet. This means that, by altering genes in the brain, fructose could affect the occurrence of these diseases. However, the researchers discovered good news as well: the omega-3 fatty acid, docosahexaenoic acid (DHA), seems to reverse the harmful changes produced by fructose. DHA occurs naturally in the membranes of our brain cells, but not in a large enough quantity to help fight diseases. Human brain and the body are deficient in the machinery to make DHA; it has to come through our diet. DHA strengthens synapses in the brain and enhances learning and memory. It is abundant in wild salmon and, to a lesser extent, in other fish and fish oil, as well as walnuts, flaxseed, and fruits and vegetables. To test the effects of fructose and DHA, the researchers trained rats to escape from a maze, and then randomly divided the animals into three groups. Then, for six weeks, one group of rats drank water with an amount of fructose that would be roughly equivalent to a person drinking a liter of soda per day. The second group was given fructose water and a diet rich in DHA. The third received water without fructose and no DHA. After the six weeks, the rats were put through the maze again. The animals that had been given only the fructose navigated the maze about half as fast than the rats that drank only water — indicating that the fructose diet had impaired their memory. The rats that had been given fructose and DHA, however, showed very similar results to those that only drank water — which strongly suggests that the DHA eliminated fructose’s harmful effects. Other tests on the rats revealed more major differences: The rats receiving a high-fructose diet had much higher blood glucose, triglycerides and insulin levels than the other two groups. Those results are significant because in humans, elevated glucose, triglycerides and insulin are linked to obesity, diabetes and many other diseases. The research team sequenced more than 20,000 genes in the rats’ brains, and identified more than 700 genes in the hypothalamus (the brain’s major metabolic control center) and more than 200 genes in the hippocampus (which helps regulate learning and memory) that were altered by the fructose. The altered genes they identified, the vast majority of which are comparable to genes in humans, are among those that interact to regulate metabolism, cell communication and inflammation. Among the conditions that can be caused by alterations to those genes are Parkinson’s disease, depression, bipolar disorder, and other brain diseases. The research also uncovered new details about the mechanism fructose uses to disrupt genes. The scientists found that fructose removes or adds a biochemical group to cytosine, one of the four nucleotides that make up DNA. This type of modification plays a critical role in turning genes “on” or “off.” Americans get most of their fructose in foods that are sweetened with high-fructose corn syrup such as soda drinks. Next time, when top off your cup at the soda fountain, remember to take your omega-3 supplement with the drink. Thanks for reading. Journal Reference: Meng, QY et al. Systems Nutrigenomics Reveals Brain Gene Networks Linking Metabolic and Brain Disorders. EBioMedicine, 2016; DOI: 10.1016/j.ebiom.2016.04.008 About SGC:SGC is an R&D focused developer of nutraceutical and pharmaceutical gummy products. The company specializes in formulating Functional Gummy® products combining the wealth of the in-house knowledge in pharmaceutics, chemistry, western medicine and herbal medicine. The company provides performance gummies® inspired by Traditional Chinese Medicine including MOCCA SHOTS™, ENERGON QUBE™, FUNTIONAL FRUIT®, and SEATTLE BEAUTY®. To learn more, visit, [email protected],call 206-257-0464, or join at